PA S CAL
R

FOR USE WITH EiiStein COLOUR MICRO COMPUTER

- -

HISOFT PASCAL
FOR
THE

TATUNG EINSTEIN MICRO-COMPUTER

HISOFT

180 High Street North
Dunstable, Beds. LUS 1AT
Tel: [0582) 606421

G b b e e b e e e e e

(C) 1984 HISOFT

—_—

ISBN NO ©7457-0124-8

TATUNG CODE NO 17-9@25-1

ALL RIGHTS RESERVED

COPYRIGHT (C) HISOFT 1984

No part of this manual or program may be reproduced by any means
without prior writen permission of the authar or the publisher.

This program is supplied in the belief that it operates as
specified, but Kuma Computers Ltd, (the company) and Tatung (UK)
Ltd. shall not be liable in any circumstances whatsoever for any
direct or indirect 1loss or damage to property incurred or
suffered by the customer or any other person as a result of any
fault or defect in goods or services supplied by the company and
in pe circumstances shall the Company be liable for conseguential
damage or loss of profits (whether or not the possibility thereof
was separately advised to it or reasonably foreseeable) arising
from the use or performance of such goods or services.

Tatung (UK) Ltd cannct accept liability for any loss or damage
caused as a result of the operation of this program, and does not
give any warranty as to the suitability of the program for any
particular application.

Published by:- Kuma Computers Ltd.,
12 Horseshoe Park,
Pangbourne ,
Berks RGE TJW

Telex 849462 Tel @7357 4335

coococoa |o
PO

-

£ Ll

et et el et et e et et D Q0 sl e Y N L D

S S P Sl S e S G) P S Rl G
WO

B

2
w4 &

—

—

PRERRPEERPEPE W

RN AMRMRA R MRS

N s e
[S g (i
R R -

=D 00 O U B L

o

—

PRELIMINARIES

Introduction
Scope of this manual

[

Copying Hisoft Pascal onto a work disc

Compiling and Running
Strong TYPEing

SYNTAX AND SEMANTICS

IDENTIFIER
UHSIGNED INTEGER
UNSIGHNED NUMBER
UNSIGHED CONSTANT
CONSTANT

SIMPLE TYPE

TYPE

~RRAYs and SETs
Pointers

FILEs

RECORDs

FIELD LIST
VARIABLE

FACTOR

TERH

SIMPLE EXPRESSION
EXPRESSION
PARAMETER LIST
STATEMENT

BLOCK

PROGRAM

PREDEFINED IDENTIFIERS

CONSTANTS
TYPES
VARIABLES

PROCEDURES AND FUNCTIONS
File Handling Procedures
Preamble - the Buffer Variable
PUT(f)

REWRITE

WRITE

WRITELN

PAGE

GET(f)

RESET

READ

READLN

(¥ S RS R

DD T 0D s

Rk
. PR

N
e

L T e

F

.

}]bl-h‘h-blﬁ$‘£‘#- PO W

D00 = OR LN L T

e

RIMIRI MBI BRI BRI R R B RN N [=]
. s s o8 s 0w i R e e

R PrRREREERRERRRE B RrRRRERREEE

.

e e e et e 0D 00] O D P L B e

BRI RSRIRI R R PRI RIS D
O~ PO

. wlme R R
I .
.o T I

b e T
s P e ow s .
oo LU LnunLnnunnunbnun bnlnwaen L

:P‘.G“G‘-F‘:D'-D"-F"-F‘#‘ =

Lo~ e

MM R MR RN

PAGE
T] BAGE
File Handling Functiens 26 SECTION 3 COMMENTS AND COMPILER OPTIOWS 37
EOLN 26
EOF 26 X3 Comments 37
INCH o7 E
3.2 Compiler Options 37
Transfer Functions 27
TRUNG 27 APPENDIX 1 ERRORS 41
ROUND 27
ENTIER 24,
ORD 23 4.1.1 Error numbers generated by the compiler &1
CHR 28 5.1.3 Runtime Error Messages 42
Arithmetic Functions 28]
ARS 28 APPENDIX 2 RESERVED WORDS AND PREDEFINED IDENTIFIERS
SGR 28 :
SGRT 28 f.2.1 Reserved Words 43
FRAC 720
SN 29 .22 Special Symbols 43
cos 29 A.2.3 Predefined Identifiers 43
TAN 29
ARCTAN 29
E¥p 20 APPENDIX 3 DATA REPRESENTATION AND STORAGE 45
LN 29 .
: /e | Data Representation 45
Further Predefined Procedures 30
HEW 30 A.3.1.1 Integers 45
MARK 30 K302 Reals 45
RELEASE 30
INLINE 30 A.3.Y.3 Characters, Booleans, Scalars 45
USER i1 B Bl Records and Arrays 47
HALT i1 3
POKE 31 A.3.1.5 Sets 47
ouT 31 A.3.1.6 Files 47
PRON 3
PROFF 32 A ATT Pointers 48
PLOT 32 .
ORICIN 37 A,3.2 Variable Storage at Runtime 48
DRAW 32
FILL 32
POLY 33 APPENDIX 4 SOME EXAMPLE HISOFT PASCAL PROGRAMS 51
GCOL 33
TCOL 34
PSG 34
} BIBLIOGRAPHY)
Further Predefined Functions 34
RANDOM 34
succ 34
PRED 35
oDD 35
CPM 35
ADDR 35
PEEK 36
INP 36
POINT 36

First Published 1984.
© Copyright David Link and David Nutlkins 1984.

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and
recording, without the written permission of the copyright holder. Such
written permission must also be obtained before any part of this publication
is stored in a retrieval system of any nature.

It 1= an infringement of the copyright pertaining to Hisoft Pascal and
associated documentation to copy, by any means whatsoever, any part of
Hisoft Pascal for any reason other than for the purposes of making a
security back—up copy of the object code.

_T___.__w. ..

— s e el el el el el el e e e

—

SECTION O PRELIMINARIES.

0,0 Introduction.

Hisoft Pascal is a fast, easy—to-use and powerful version of the Pascal language as
wiecified in the Pascal User Manual and Report (Jensen/Wirth Second Edition). Dmissions
from this specification are as follows:

Only FILEs of CHAR are allowed.

A RECORD type may not have a VARIANT part.

PROCEDUREs and FUNCTIONs are not valid as parameters.

Home extra functions and procedures are included to reflect the changing environment
in which compilers are used; among these are POKE, PEEK, CPM and ADDR. Also included are
routines to access the graphics and sound facilities of the Tatung Einstein.

The compiler occupies approximately 12K of storage while the runtimes take up roughly
AK. Both are supplied on microfloppy disk in one package.

0.1 Sicope of this manual.

This manual is not intended to teach you Pascal; you are referred to the excellent books
given in the Bibliography if you are a newcomer to programming in Pascal.

This manual is a reference document, detailing the particular features of Hisoft Pascal.
fiwction 1 gives the syntax and the semantics expected by the compiler.

Bection 2 details the various predefined identifiers that are available within Hisoft
Pancal, from CONSTants to FUNCTIONSs.

Beetion 3 contains information on the varieus compiler options available and also on
the format of comments.

The above Sections should be read carefully by all users.
Appendix | details the error messages generated both by the compiler and the runtimes.
Appendix 2 lists the predefined identifiers and reserved words.

Appendix 3 gives details on the internal representation of data within Hisoft Pascal —
useful for programmers who wish to get their hands dirty.

Appendix 4 gives some example Pascal programs — study this if you experience any
problems in writing Hisoft Fascal programs.

ll

0.2 Copying Hisoft Pascal onto a work disc.

i t format a disc using the
a disc for use with Hisoft Pascal, you should firs
;gsp;:'éf([;‘ command. Then copy onto this disc COPY.COM using the C(_JPY command. Been:l:;
‘DOS/MOS Introduction’ manual for details. For example, on a one drive system you w
use:

COPY O:COPY.COM TO O:

i 1so copy this onto the work disc.
h text editor or wordprocessor you should a 3
;L‘::m;:eczp:xxma onto the disc as you will be using this to type in your Pascal

programs.
Finally you should copy Hisoft Fascal from the distribution disc using for example:
COPY O:HMPEIN.COM TD G

Now you can put the distribution disc away in a safe place.

0.3 Compiling and Running.

When using Hisoft Pascal on the Tatung Einstein you can type in your Pascal prrua?:a::
using a text editor or wordprocessor. 1f however you do not possess ﬁuc-: ;C pr:tg 1:“.
can use ¥BAS to enter source and save it using the SAVE command with an extens:

For example type the following:
XBAS

10 PRODBRAM FALT;

20 VAR I:INTEGER;

20 FUNCTION FACT (N: INTEGER) s REALS
GIN

;g ?E N>1 THEM FACT:=N#FACT (N-1) ELBE FAROT:=1

&0 ENDj;

70 BEGIN

80 REFEAT

0 WRITE('FACTORIAL: ')j

100 READLMNg READ(IN:

110 WRITELN{ ® IS *,FACT(I));

120 WRITELN

130 UNTIL FALGE

140 END.

SAVE "FACT.ASC"
nos
and then to the O: prompt
HPEIN FACT
source i i detected an object file
The ode will be compiled and assuming No errors are
named Fﬁl:.'T.(.".:tl‘t will be created. This can be run by simply typing FACT to the DOS prompt.

If there are any errors you should hit ‘E’ to exit the compiler. Then load XBAS and the
program and correct the typing mistake.

R .

o
— =

Wi thim program is run it will prompt you to enter numbers and give the factorial of
WAl Bumbier input until you type CTRL/C which will return you to DOS.

Nute that on the Tatung Einstien & and 5’ are used instead of ‘T’ and F because the
Liimputer does not use a proper ASCII character set. The eguivalents of '{’ and '} should

it e used for comments as BASIC treats them as tokens. The '(* and ‘%) form must
#lway s be used instead. See Section 3.

1 e wrample above we used the simplest form of command line.
T full form looks like this:

MIN f8 181> FileZ <joptiond ,option,....>>

Wil e
Tle2 is the source file which must have extension of ASC.
If this file does not exist then an error message is given.
Filml is an optionally different obect file (with extension COM).
it ion is an ordinary compiler option (see Sectin 3.2 or one of
the following:
W — don’t produce any object code.
¥ = delete any existing object code.
Ll — include trig routines and EXP,LN and FRAC 1n the runtimes.
3} — do not include REAL routines in the run—times.
Viwinn - set the runtime stack to nnnn (hexadecimall,
]

= treat the source file a a non—BASIC file. i.e. without line numbers.

It I aption is used only when a text editor or wordprocessor is used to create source
fwut, This should be standard CP/M ASCII text. That is lines are terminated by CR,LF and
this file is terminated with a CTRL/Z. If you have a wordprocessor that normally uses the
Lo bit of characters you should make sure that this feature is disabled. If the B option
in not used the first 7 characters of each line are taken to be the line number.

I T and R options can used to keep the runtimes fairly small if REALS or trigonometric
funetions are not used. If the latter are used without including them in the runtimes

Lhen an "#ERROR* I° is giver. Note use the R option with care since the compiler makes no
chechke,

Uptions within the source program override those specified in the command line. The N, ¥,
Iy Wy ¥V and B options are not available within the program.

fBome wxample command lines are given belows

HPEIN HILBERT;P+,N

get a compilation listing (to printer) of a program.

HPEIN BYTE;f,Y,0-,C—,8—A~

turn aff all checks; say for a benchmark.

HPEIN OBJ1 SCEL;R,B,L~

compile the program SCELASC entered using a wordprocessor to produce the file
OBJL.COM with no compiler listing (to make compilation faster) and not including REAL
routines with the obiect file.

The compiler generatec a listing of the form
wwis: mnnn text of source line

wrwy is the address where the code generated by this line begins.
anen is the line number with leading zeroes suppressed.

where:

1f a line contains more than 80 characters then the compiler inserts
new—line characters so that the length of a line is never more than BO characters.

The listing may be directed to a printer, if required, by the use of option P+ (see
Section I

holding the CONTROL key down and the ‘S’ key

You may pause the listing at any stage by
to return to DOS or any other key to restart

down at the same time; use CONTROL and 'C’
the Iisting.

If an
displayed, followed by an up-arrow (779,
the error, and an error numnber (see Appendix 1.
to DOS tidily (delating the object file), CONTROL and
continue the compilation.

error is detected during the compilation then the message ‘#*ERROR#%' will be
which points after the symbol which generated
The listing will pause; hit 'E" to return
‘C* to abort, or any other key to

I the program terminates incorrectly (e.g. without ‘END.) then the message No more
tert' will be displayed and control returned to DOS.

14 a compilation contains any errors then the number of errors detected will be given
and any obiect code produced will ba deleted. Otherwise a COM file will be generated
(unless you use option N) ready for direct execution from DOS. The COM file contains the
object code produced by the compilation and, automatically, the runtime support
routines. Remember that you can cut down the size of these runtime routines by using
options in the command line — see above.

During a run of the object code various runtime error messages may be generated (see
Appendiy 1. You may suspend a run while it is outputting to the screen or printer by
using CONTROL and 'S% subsequently use CONTROL and ‘C’ to abort the run and return to
DOS ar any other key to resume the run.

R e = W
1

e

f-—A
P

= d]

mm_Wm_mWm W e

b e = B B =N =D

4 fitrong TYPEing.

Dillwrent languages have differe doe
. nt ways of ensuring that the user
wlement of data in a manner which is inconsistent with its definition. e

Mt e end of the scale there is machine
- code where no checks whatew
:‘:m‘afh\rlrnﬁiu being referenced. Next we have a language like the B::e.:rin:a::g::;‘:hi:
. i ;r acter, integer and Boolean data may be freely mixed without generati
.‘"“‘: .nt:t::;:f“mb::ale comes BASIC which distinguishes between integers a:_:
y = ween integers and reals (perhaps using the "% si
intwger w), Then comes Pascal which goes as far as allowing dil:gl.n:t u-::—ermun tclmd!;l:::

Iypes. At the top of the scale (at present) i ;
t. 1 = g
Wit ent, incompatible numeric l:ypep =, e

There are basically two a engt
: pproaches used by Pascal implementations t
trpll.l":al it:t;ctu;;l equivalence or name eqguivalence. Hisoft Pasc:l' Ej:es :a:::
.qu- o “m.;.; or CF!RDE and ARRAYs. The consequences of this are clarified in Section 1
suffice to give an example here; say two variables are defined as follows:

VAR A : ARRAYD'A..'C']1 OF INTEGER;
B : ARRAYL'A..'C'] OF INTEGER;

Lhisn one might be tem i i
pted to think that one could write A:=B; but thi
' = = ha ould gener.
:::: .:im 10¥ unt;z;il-h:'-nft Pascal since two separai;e ‘TYFE ::cnr-ds' hav: ﬁ::
above nitions. In other words, the user has not taken 151
that A and B should represent the same type of éata. She/He could do this :: i

VAR A,B : ARRAYL'A'..’CT] OF INTEGER;

anl now the user can freely as
o ¥y assign A to B and vice versa since only one TYPE record’

Although on the surface this name equivalence approach may seem a little complicated,

in general it leads to § i ; :
B .|| ORIEAREnG Srrark sinck Lt requires sore Undte) thougit

]

k

F_---!

HECTION | SYNTAX AND SEMANTICS.

Thin section details the syntax and the semantics of Hisoft Fascal - unless ntherwiss
stated the implementation is as specified in the Pascal User Manual and Report Second

Bdition (Jensen/W: rih.

nly the first B characters of an identifier are treated as significant. These first -]
Chmeacter s must not constitute a reserved word (ses Appendi 2,

i) IDENTIFIER.

Iwntifiers may contain lower or upper case letters. Lower ce=e is rob converted to
Ui case so that the identifiers HELLO, HEL!c and hellp are &l different. Reserved
wir ds and predefined identifiers may only be entered in upper cs ..

1,2 UNGIGNE D INTEGEF,

Ot (oren

Intwger s have an absolute value less than or equal to 32767 in Hisoft Pascal. Larger
whole numbers are treated as reals.

The mantissa of reals is 23 bits in length. The accuracy attained using reals is

3

therefore about 7 significant figures. Note that accuracy is lost i1f the result of a
calculation is much less than the absolute values of its arguments e.g. 2,00002 - 2 does
not yield 0.00002. This i= due to the inaccuracy involved in representing decimal
fractions as binary fractions. It does not occur when integers of moderate size are
represented as reals e.g. 200002 - 200000 = 2 exactly.

The largest real available 15 J.4E38 while the smallest is 5.7E-3%.

There is no point in using more than 7 digits in the mantissa when specifying reals since
extra digits are ignored except for their place value.

When accuracy is imgportant aveid leading zeroes since these count as one of the digits.
Thus 0.000123454 is represented less accurately than 1.23456E-4.

Hexadecimal numbers are available for programmers to specify memory addresses for

assembly language linkage inter alia. Note that there must be at least one hexadecimal
digit present after the #, otherwise an error (*ERROR+ 51) will be generated.

1.4 UNSIGNED CONSTANT.

— identifier -
4 |] e
” nber J -

O (10

Note that strings may not contain more than 255 characters. String types are ARRAY
[1..N] OF CHAR where N is an integer between 1 and 255 inclusive. Literal strings
should not contain end-pf-line characters (CHR(13)) — if they do then an ‘#*ERROR# &8° is
generated.

The characters available are the full expanded set of ASCII values with 256 elements. To

maintain compatibility with Standard Fascal the null character is not represented as 3
instead CHR{O) should be used.

1.5 COMSTANT.

Y

O e

_L-r

P

,—

—— s e el sl e el o e e e

The comments made in Section L4 concerning strings apply here.

1. SIMPLE TYPE.

fcalar enumerated types (identifier, identifier, .. may not have more than 25&
wloments,

L7 TYPE.

ﬁ]

type

The reserved word PACKED is accepted but ignored since packing already takes place for
ar ra\.rl of characters etc. The only case in which the packing of arrays would be
advantageous is with an array of Booleans — but this is more naturally expressed as a

T

set when packing is required.

1.7.1 ARRAYs and SETs.

The base type of a set may have up to 256 elements. This enables SETs of CHAR to be
declared together with SETs of any user enumerated type. Note, however, that only
subranges of integers can be used as base types. All subsets of integers are treated
as sets of 0.255.

Full arrays of arrays, arrays of sets, records of sets etc. are supported.

Two ARRAY types are only treated as equivalent if their definition stems from the same
use of the reserved word ARRAY. Thus the following types are not equivalent:

TYPE
tablea = ARRAY[1..100] OF INTEBGER;
tableb = ARRAYIL..1001 OF INTEGER;

So a variable of type tablea may not be assigned to a variable of type tableb. This
enables mistakes to be detected such as assigning two tables representing different
data. The above restriction does not hold for the special case of arrays of a string
type, since arrays of this type are always used to represent similar data.

1.7.2 Pointers.

Hisoft Pascal allows the creation of dynamic variables through the use of the Standard
Frocedure NEW (see Section Z) A dynamic variable, unlike a static variable which has
memory space allocated for it throughout the block in which it is declared, cannot be
referenced directly through an identifier since it does not have an identifier; instead a
pointer variable is used. This pointer variable, which is a static variable, contains the
address of the dynamic variable and the dynamic variable itself is accessed by including
a "™ after the pointer variable. Examples of the use of pointer types can be studied in
Appendix 4.

There are some restrictions on the use of pointers within Hisoft Pascal. These are as
follows:
Pointers to types that have not been declared are not allowed. This does not prevent
the construction of linked list structures since type definitions may contain pointers
to themselves e.g.
TYPE
item = RECORD

value : INTEGER;

next : “item

END;

link = “item;

Pointers to pointers and pointers to files are both not allowed.

Pointers to the same type are regarded as equivalent e.g.

vaR
first : link;

10

a

B

—

L

(-

L |

— — o e s e e o o o e =

current @ “item;

The variables first and current are equivalent (i.e. structural equivalence is used)
il may be assigned to each other or compared.

The predefined constant NIL is supported and when this is assigned to a pointer
varlable then the pointer variable is deemed to contain no address.

178 FILEs.

Hisoft Pascal supports FILEs OF CHAR. Files are sequential and are thought to be made
up of lines, separated by a line separator; the lines are physically separated by the
e CRLF ti.e. CHR(13), CHRU0) but only the CR is treated as a line separator, the LF is
Lunirwid and skipped. The end of a file is detected by the presence of a CTRL/Z (CHR(Z&»
char acter.

The buffer variable construct is supported — see Section 2 for more details.

The Btandard Type TEXT is defined as FILE OF CHAR so that the declarations

filel : FILE OF CHAR;
file?2 : TEXT;

are sguivalent.

Twio files are predefined viz. INPUT and DUTPUT. These are textfiles which represent
the standard 1/0 media of the computer i.e. the keyboard (via DOS routine 10) and the CRT
fvia DOS routine 2). They are the default values in any textfile operations e.g.
WHITE (value); is equivalent to WRITE(OUTPUT,value);. Note that INPUT is considered to
bl with a blank line - see Section 2.

Ihw procedures RESET and REWRITE are provided to open files while the procedures
(KT and FUT allow primitive operations on files. More details of these procedures and
file handling in general may be found in Section 2. An example of the use of files may be
ftound in Appendis 4.

Hestrictions on the use of files follow:

Files may not be components of structured types.

I'iles cannot be declared as local variables, only global.

Pointers to files are not allowed.

Files may be used as variable parameters but not as value parameters — this is
Htandard Pascal.

L/ RECORDs,

e implementation of RECDRDs, structured variables composed of a fixed number of
tonsbituents called fields, within Hisoft Pascal is as Standard Pascal except that the
variant part of the field list is not supported.

I'wo RECORD types are only treated as eguivalent if their declaration stems from the
same occurrence of the reserved word RECORD see Section 1.7.1 above.

1n

)

The WITH statement may be used to access the different fields within a record in a more
compact form.

See Appendix 4 for an example of the use of WITH and RECORDs in general.

1.8 FIELD LIST.

7}
pa

A O -

Used in conjunction with RECORDs see Section 1.7.4 above and Appendix 4 for an example.

1.9 VARIABLE.

Two kinds of variables are supported within Hisoft Pascalj static and dynamic variables.
Static variables are explicitly declared through VAR and memory is allocated for them
during the entire execution of the block in which they were declared.

Dynamic variables, however, are created dynamically during program execution by the
procedure NEW. They are not declared explicitly and cannot be referenced by an
identifier. They are referenced indirectly by a static variable of type pointer, which
contains the address of the dynamic variable.

See Section 1.7.2 and Section 2 for more details of the use of dynamic variables and
Appendix 4 for an example.

When specifying elements of multi-dimensional arrays the programmer is not forced to

12

FR_SN_TR_Th_Th_"h_ e "k "™ W™ ™ W™ W

use the same form of index specification in the reference as was used in the
declaration.

®.0. if variable a is declared as ARRAYI1..101 OF ARRAY[1.101 OF INTEGER then either
AN or all,l] may be used to access element 1,1) of the array.

FACTOR.

-
e

-

Sewe EXPRESSION in Section 1.13 and FUNCTIONSs in Section T for more details.

1L.11 TERM.

T2 30088

The lowerbound of a set is always zero and the set size is always the maximum of the
bawe type of the set. Thus a SET OF CHAR always occupies 32 bytes (a possible 254
wlements ~ one bit for each element). Similarly a SET OF 0..10 is equivalent to SET OF
0,255,

13

—— @S e

1.12 SIMPLE EXPRESSION.

The same comments made in Section 1.11 concerning sets apply to simple expressions.

113 EXPRESSION.

A S T |

RLCPQ O

When using IN, the set attributes are the full range of the type of the simple expression
with the exception of integer arguments for which the attributes are taken as if [0..255]
had been encountered.

BXpr

The above syntax applies when comparing strings of the same length, pointers and all
scalar types. Sets may be compared using »=, <=, <> or =.Fointers may only be compared
using = and <>.

1.14 PARAMETER LIST.

V., = =, vy v
alol

oy

A type identifier must be used following the colon ~ otherwise *ERROR* 44 will result.
Variable parameters as well as value parameters are fully supported.
Procedures and functions are not valid as parameters.

Files can only be designated variable parameters not value parameters.

14

L
o

| .

L
|

|

— — — e e s e o e o e ==

115 STATEMENT.

Huler to the syntax diagram on page 14.
Anmignnent statements:

Hwe Bection 1.7 for information on which assignment statements are illegal.

CASE wtatements:

A entirely null case list is not allowed i.e. CASE OF END; will generate an error

(wERRORS 13,

The ELSE clause, which is an alternative to END, is executed if the selector
Cwnpr musion’ overleaf) is not found in one of the case lists (‘constant” overleaf).

11 the END terminator is used and the selector is not found then control is passed to
the statement following the END.

PR statements:

Variable parameters may not be used as FOR statement wvariables. This would be
Inefficient and it is certainly usual practice to use variable parameters sparingly,
uming local parameters instead, where possible.

BOTO statements:

It is enly possible to G070 a label which is present in the same block as the GOTO
wtatement and at the same level.

Labels must be declared (using the Reserved Word LABEL) in the block in which they are

unmily & label consists of at least one and up to four digits. When a label is used to mark

a wtatement it must appear at the beginning of the statement and be followed by a colon
s

15

STATEMENT.

- - -
1

L——d

-f-
-— e s e e e e B W BB .

ad

= s = = -
—

el Bt OCK.

Mokw that, when a file variable is declared, then it may be followed, optionally, by a
st ant with a value between 1 and 255 inclusive enclosed in square brackets. This
fhunstant specifies the buffer size to be used for this file, in 128 character units. For
wrample if you require the file filel to have a buffer size of 2K (2048 characters) then

i des lar ation should look like:
VAR filel : FILE OF CHAR [163;

i

CONRT filenize = 14;
v filel : TEXTIfilesizel;

17

forward References.

&5 in the Pascal User Manual and Report {(Section 11.C.1) procedures and functions may be
referenced before they declared through use of the Reserved Word FORWARD ..

(* procedure a declared to be #)

PROCEDURE aly:t} ; FORWARD; _
{* forward of this statement *)

PROCEDURE blx:t);
BEGIN
alph
END;

FROCEDURE a3
BEGIN
bigk

END;

(# procedure a refersnced. ¥)

(# actual declaration of procedure a. *)

Note that the parameters and result type of the procedure a are declared along with
FORWARD and are not repeated in the main declaration of the procedure. Remember,

FORWARD is a Reserved Word.

1.17 PROGRAM.

Note that the ‘microcomputer standard’ form is used i.e. there are no formal par amebers
of the program and any file operations, on default of the file name, _r'-ﬂlr to the
predefined file identifiers INPUT and OUTFUT depending on the type of file operation.
See Section 1.7.3 and Section 2.

|4

B

—

F 1

—

[-

UELTHON & PIEDEFINED IDENTIFIERS.
NN 81,

AR The largest integer available i.e. 327&7.
LT The constants of type Boolean.
a1y,
[CLLEA Hae tec tion 1.3,
i Hesw fiwe tion 1.5,
Fiini Thie tull extended ASCII character set of 256 elements.
R (TR ALSE). This type is used in logical operations

f luding the results of comparisons.
ey This sguivalent to the type FILE OF CHAR;.

LT P
1w dedault file identifiers used in all file operations.
NPT im wel to read data through DOS routine 10 - read console buffer.
(TP is set to write data through routine 2 — normally the CRT.

BALE e Hailling Proceduros.

DAL P mamiile © the Butfer Variable £

Whwiwver m textfile § is declared then a variable #~, the buffer
Variabile, in alno created. £, of type CHAR, can be thought of as a
Witk through which we can access a component of the file — all
data bianmters to or from the file occur through §~. The buffer
vaiiabile may be assigned or appear in an expression provided type
Compa ity is maintained.

L

The standard procedures GET and PUT are provided to handle the
buffer variable on a primitive level while the procedures READLNY
and WRITE(LN) allow more sophisticated input and output such as
eonversion of numbers to strings etc.

Before data is transferred between the file and the buffer
variable, in either direction, the file must have been opened
through the use of RESET (for reading) or REWRITE {for writing).
These procedures provide the only method of opening a file.

The buffer size is, by default, 128 characters; this may be
increased, in units of 128 characters, by enclosing a constant
(giving the number of 128 character units) in square brackets
after the declaration of the file f - see Section Lié.

2.4.1.2 PUTLH

PUT(f) appends the value of f° to the file + provided that EOF 1s
TRUE. After completion of the operation EOF remains TRUE and the
buffer variable f~ becomes undefined. Note, therefore, that itis
possitle only to append a value to a textfile within Hisoft Pascal
— files must be written sequentially.

Before PUT is used on a file, the file must have been opened for
writing by the use of REWRITE - the exception to this is if the file
is the default file DUTFUT which is con

sidered already open on entry to the programs a REWRITE must not
be issued on the file OUTPUT.

2.4.1.7 REWRITE(, fr)

REWRITE is used to open a textfile for writing. ¥ specifies the file
wvariable that is to be used within the program — this should have
been declared in the outer block e.g. VAR filel = FILE OF CHAR;
remember that file variables may only be global. n is ARRAYL1..141
DF CHAR and denotes the actual DOS file specification under which
the file is to occur on the diskette. Note that #n must contain 14
characters i.e. 1 character for the drive name, then a colon, then
g characters for the filename, then a period and finally 3
characters for the file extension; the drive name and colon may be
replaced by 2 spaces in which case the default drive name is used.
Examples:

REWRITE(filel, aiTESTFILE.DAT)

creates (‘makes’) the file TESTFILE.DAT on drive A of the disk
system.

REWRITE(file2,” LETTER .TXT3
creates the file LETTER.DAT on the default drive.

REWRITE causes any existing file fn to be deleted from the

20

-
| _—
F—3

—

d.isklette‘s directory - EOF(f) becomes TRUE and the buffer
variable f* is undefined.

LA WRITE

The procedure WRITE is used to append structured data to a
textfile. The default textfile is the predefined file OUTPUT which
is normally the standard output device of the computer. When the
variable & to be written is simply of type character then
WRITE(f,a) is exactly equivalent to: BEGIN ~ := &5 FUT(f) EMD;.

Benerally thouagh, if f is a textfile:
WRITE(LF,IPI,PL,....... PrY; is equivalent to:
BEGIN WRITE(F,IP1); WRITE({Ff, P2 coaseenad WRITE(LF2PN);

The write parameters F1,FPZ,.....Pn can have one of the following
tormss

<gr or <emm> or <emmmn> or <emmsH>

where e, m and n are expressions and H is a literal constant.
We have S cases to examine:
11e is of type integer: and either <> or Jem® is used.

The value of the integer expression e is converted to a
:hlral:tu_:r string with & trailing space. The length of the string
can be increasad {with leading spaces) by the use of m which
specifies the total number of characters to be output. If m is
not sufficient for & to be written or m is not present then & is
written out in full, with a trailing space, and m is ignored. Note
that, if m is specified to be the length of e without the trailing
space then no trailing space will be output.

21 e is of type integer and the form <esmH> is used.

In this case e is output in hexadecimal. If m=1 or m=2 then the
value (e MOD 167m) is output in a width of exactly m characters.
if m=3 or m=4 then the full value of e is output in hexadecimal
in a width of 4 characters. If m*4 then leading sSpaces are
inur_ted before the full hexadecimal value of & as necessary.
Leading zeroes will be inserted where applicable. Examples:

WRITE(102S5imzH);

m=1 outputs: 1
m=2 putputs: 01
m=2 oputputs: 0401
me=a outputs: 0401

21

m=5 outputs: 0401

31 e is of type real. The forms <e>, <emm> or <esmin> may
be used.

The value of e is converted to a character string representing a
real number. The format of the representation is determined by n.

If n is pot present then the number is output in scientific
notation, with a mantissa and an exponent. If the number is
negative then a minus sign is output prior to the mantissa,
otherwise a space is output. The number is always output to at
least one decimal place up to a maximum of 5 decimal places and the
exponent is always signed (either with a plus or minus sign). This
mzans that the minimum width of the scientific representation is 8
characters; if the field width m is less than 8 then the full
width of 12 characters will always be output. If m>=8 then one or
more decimal places will be output up to a maximum of 5 decimal
places (m=12). For m*12 leading spaces are inserted before the
number. Examples:

WRITE(-1.23E 10:m);

m=7 gives: —1.23000E+10
m=g gives: —1L.2E+10

m=%9 gives: —1.23E+10
m=10 gives: —1.230E+10
m=11 gives: —1.2300E+10
m=12 givest —1.23000E+10
m=13 gives: -~1.23000E+10

If the form <emmzn> is used then a fixed-point representation of
the number e will be written with n specifying the number of
decimal places to be output. No leading spaces will be output
unless the field width m is sufficiently large. If n is zero then
e is output as an integer. If e is too large to be output in the
specified field width then it is output in scientific format with a
field width of m (see above). Examples:

WRITE(EZ:&:2) gives: 100.00
WRITE(EZ:8:2) gives: _100.00
WRITE(23.455:6:1) gives: 235
WRITE(Z23.455:4:2) gives: 2.34550E+01
WRITE(23.455:4:0) gives: _23

4l e is of type character or type string.

{If & i=s of type character then WRITE(f,e); is exactly equivalent
to BEGIN " :=e; PUT(f) END;.)

Either <e> or <emm> may be used and the character or string of
characters will be output in a minimum field width of 1 (for
characters) or the length of the string (for string types) Leading
spaces are inserted if m is sufficiently large.

22

|

| ..,

—_—

P -1

51e is of type Boolean.

Either <er or <esm> may be used and ‘TRUE" or 'FAL_SI_E‘ will be
putput depending on the Boolean value of e , using a minimum field
width of 4 or 5 respectively.

FALN WRITELN

WHRITELN{$H? appends an end of line marker to the textfile f.

WL TELNCCF, P P2 aenessP3l is equivalent to:

BEGIN WRITEWHF,3PLP2,.......PT); WRITELNI(F)} END;

The default file identifier f is the file DUTPUT. Remember that,
fur any WRITE or WRITELN on a textfile (other than OUTPUT) tn_bn
Wi cwssful, then the file must first have been opened for writing
thr ough the use of REWRITE(f).

VoAb PABECLED

e procedure PAGEXY causes an ASCII form feed character (00_(.:1
Lis s wiitben to the file +. If f is absent then the file OUTPUT is
sunumed; this will cause the video screen to be cleared.

AT BETIN

Wi advances the file window for textfile f by one position and
L bransfers one element of data from the textfile f to the
sumii lated buffer variable £,

LN iw TRUE after the window has been advanced then the
vl 0f 1 after the GET(f) 1s CHR(2&) and EOF remains TRUE.

Wi disiw UF T4 is used on a file the file must have been nptneﬂ for
Fwading through the use of RESET(f; the only exception is if the
File 1w Lhw detault file INPUT which is considered already open on
wiliy Lo the program — a RESET should not be issued on the file

INFLIT,

2.4.1.8 RESET{{, fn)

RESET(f,fn} is used to open a file for reading — the file identifier
f, which should have been declared as a global variable, is
associated with the DOS diskfile fn which must already exist. See
Section 2.4.1.3 for details of the syntax of n.

RESET{f,fn) opens the file ¥ for reading and, 1f the file is not
empty the first component of the textfile is assigned to the
buffer variable - and EDF(f) becomes FALSE. If the file f is
empty before the RESET() is issued then " is left undefined and
EOF(f) becomes TRUE.

If the file is already open when RESET() is issued then the file 1s
first closed before being opened for read operations.

RESET must not be used an the default file INPUT - this file 1s
already gpen on entry to the program.

2.4.1.% READ

The procedure READ is used to access data from textfiles. If the

variahle V to be read from the textfile f is simply of type

character then READf,V); is exactly equivalent to: BEGIN V= 3
| BET(f) END;. In general though: : '

READ(IF, V1, V2, ueeeee-ViN)y is @quivalent to:

BEGIN READF,2V1); REAIFIVZ) ce READI(F,}WN) END;

where V1, V2 etc. may be of type character, string, integer or
real. _ v ey

The default value of f is INPUT which is normally assigned to the
system's keyboard.

The statement READ((#,3V) has different effects depending on the
type of V. There are 4 cases to consider:

11V is of type character.

In this case READ({F,2V); i= exactly equivalent to: BEGIN V1= 73
BET(f) END; and a character is effectively read from the buffer
and assigned to V. If the text window on the file is positioned on a
line marker {a CHR(13®) character) then the function EOLM) will
return the value TRUE and the buffer variable " will contain the
value CHR(LZ). When a read operation is subsequently performed on
the file the file window will be positioned at the start of a new
line.

24

Fmt note: the default file INPUT initially contains a blank
ne so that EOLN is TRUE at the beginning of the program. This
mmans that if the first read on the file INFUT is of type character
then a CHR(13) value will be returned followed by the reading in of
a new line from the keyboard; a subsequent read of type character
will return the first character from this new line, assuming it is
not blank, See also the procedure READLN below.

21V is of type string.

A atring of characters may be read using READ and in this case a
series of characters will be read from the file until the number of
characters defined by the string has been read or (EOLN} DR (EOF)
* TRUE. If the string is not filled by the read (i.e. if end—-of-line
ur end-of-file is reached before the whole string has been
assigned) then the end of the string is filled with null (CHR(O)
tharacters - this enables the programmer to evaluate the length
of the string that was read.

The note concerning the file INPUT in 1} above also applies here.

21V is of type integer.

In this case a series of characters which represent an integer as
defined in Section 1.3 is read. All preceding blanks and
end-of-line markers are skipped (this means that integers may be
read immediately from the default file INPUT cf. the note in 11
abovel.

If the integer read has an absolute value greater than MAXINT
(S2747) then the runtime error ‘Number too large’ will be issued
ard execution terminated.

If the first character read, after spaces and end-of-line
tharacters have been skipped, is not a digit or a sign '+ or =7
then the runtime error ‘Number expected’ will be reported and the
pr ogram aborted.

A1V is of type real.

Herw, a series of characters representing a real number
according to the syntax of Section 1.3 will be read.

A1l lwading spaces and end—of-line markers are skipped and, as for
intwger s above, the first character afterwards must be a digit or
& wign. If the number read is too large or too small (see Section
L% then an ‘Overflow’ error will be reported, if ‘E’ is present
without a following sign or digit then ‘Exponent expected’ error
will b generated and if a decimal point is present without a
subiseguent digit then a ‘Number expected’ error will be given.

Nwalw, like integers, may be read immediately from the default file
NPT s 1] and 31 above.

2.4,1.10 READLN

READLNI{F, 3V, V2 ¥l 15 eguivalent to:

BEGIN READ({f,}V1,V2,.meeaVily READLN END;

READLN{F)} positions the file window over the component past the
next end-of-line marker and assigns to f* the value of this next
component. Thus EOLN{f)} becomes FALSE after the execution of
READLN{(f)} unless the next line is blank.

The default value of ¥ is INPUT.

READLN may be used to skip the blank line which is present at the
beginning of the file INPUT i.e. for the file INPUT only, READLN has
the effect of reading in a new buffer. This will be useful if you
wish to read a component of type character from the beginning of
INFUT - it i=s not necessary if you are reading an integer or a real
from the first line in INPUT (since end-of-line markers are
skipped) or if you are reading characters from subsequent lines.

2.4.2 File Handling Functions.

2.4,2.1 EOLNLGR

The function EOLN is a Boolean function which returns the value
TRUE if the file window of file f is currently positioned over an
end-of-line character (CHR(O3)). Otherwise the function returns
the value FALSE.

The default value of § is the file INPUT.

When EOLN{(f)} is TRUE then the value of the associated buffer
variable §* is CHR{13I).

2.4.2.2 EOF 0§12

This is a Boolean function which returns the value TRUE when an
end-of-file character (CHR{Z4)) appears under the file window of
the file f.Otherwise EOF{(f)} returns the value FALSE.

The default value of f is the file INPUT.

Note: EOF will become TRUE and remain TRUE when a CHRI26)

character appears under the text window of any file but this will
not prevent the action of any subsequent BET requests; this

26

phalilen any spurious end-of—file markers within a file to be

i a miso be used to detect abnormal conditions during the
min‘ Wl & file. During the writing of a file f then EOF(f) is
ik mslly TR, However if an abnormal condition, such as a full
Wik o irectory, occurs then EOF(f) will become FALSE and the
LA Al detect this.

LR L

Tt Lion INCH causes the standard input device (normally the

Leyliae b of the computer to be scanned and, if a key has been

waniil, returns the character represented by the key pressed.

I i by has been pressed then CHR(O) is returned. The function

s wior o returns a result of type character. You should use the
Compk e option C= with this function. (See Section 3).

A T arm it Funetions.
R N

e par wmeter X must be of type real or integer and the value
P b i by TRUNE is the greatest integer less than or equal to X
Il X in positive or the least integer greater than or equal to X
K iw negative. Examples:

TRUNC{-1.5) returns =1 TRUNC(L9) returns 1

WAL R RO

X wust b of type real or integer and the function returns the
s et integer to X (according to standard rounding rules)
I g e

ROUND{-&.5) returns -6 ROUND(11.7) returns 12
ROUNIH-&.51) returns =7 ROUND{(Z3.5) returns 24

WA 0 ENTIEROD
¥ must be of type real or integer — ENTIER returns the greatest
integer lwss than or equal to X, for all X. Examples:
ENTIER(-6.5) returns -7 ENTIER(L.7) returns 11

27

Note: ENTIER is not a Standard Pascal function but is the
equivalent of BASIC's INT. It is useful when writing fast routines
for many mathematical applications.

2.4.3.4 ORDX)

X may be of any scalar type except real. The value returned is an
integer representing the ordinal number of the value of X within
the set defining the type of X.

I X is of type integer then ORDOO = X ; this should normally be
avoided.

Examples:
DRD{"a"} returns 97 ORD{E") returns &4

2.4.3.5 CHROO
X must be of type integer. CHR returns a character value
corresponding to the ASCIH value of X. Examples:

CHR(4%) returns "1’ CHR(%1) returns T

2.4.4 Arithmetic Functions.

In all the functions within this sub-section the parameter X must be of type real or

integer.
2.4.4.1 ABS)

Returns the absolute value of X (e.g. ABS(—4.5) gives 4.5). The
result is of the same type as X.

2.4.4.2 SERX)

Returns the value X#X i.e. the square of X. The result is of the
same type as X.

2.4.4.3 SARTIX)

Returns the square root of X - the returned value is always of
28

!
.
|
|
i
|
i
.
[
3
3
J
i

type real. A ‘Maths Call Error’ is generated if the argument X is
negative.

20.4.4 FRACIX)

Returns the fractional part of X: FRACOO = X — ENTIER(X).

A= with ENTIER this function is useful for writing many fast
mathematical routines. Examples:

FRACI(L.5) returns 0.5 FRAC(-12.54) returns O.44

La,4.5 SINGD

Returns the sine of X where X is in radians. The result is always
of type real.

LA COSOO

Returns the cosine of ¥ where X is in radians. The result is
always of type real.

PAALT TAN)

Returns the tangent of X where X is in radians. The result is
always of type real.

LA ARCTANDO

Returns the angle, in radians, whose tangent is egual to the
number X. The result is of type real.

2.4.4.% EXP(X)

Returns the value e*X where e = 2,71828. The result is always of
type real.

SALALN0 LNDD

Returns the natural logarithm (i.e. to the base &) of X. The result
is of type real. If X <= O then a 'Maths Call Error’ will be

generated.

2.4.5 Further Predefined Procedures. A5 USERMV)

2.4.5.1 NEW(p)

The procedure NEW(p) allocates space for a dynamic variable. The
variable p is a pointer wvariable and after NEW(p) has been
executed p contains the address of the newly allocated dynamic

USER is a procedure with one integer argument V. The procedure
causes a call to be made to the memory address given by V. Since
Hisoft Pascal holds integers in two's complement form (see
Appendix 3! then in order to refer to addresses greater than
#7FFF (32767) negative values of V must be used. For example

#CO0O0 ie ~16384 and so USER(-146384); would invoke a a call to the
memory address #C000. However, when using a constant to refer to
a memory address, it is more convenient to use hexadecimal.

variable. The type of the dynamic variable is the same as the type
of the pointer variable p and this can be of any type except FILE.

To access the dynamic variable p* is used - see Appendix 4 for an

example of the use of pointers to reference dynamic variables. The routine called should finish with a ZB0 RET instruction (§C9)

and must preserve the IX register.
To re-allocate space used for dynamic variables use the
procedures MARK and RELEASE (see below)

2886 HALT

2.4.5.2 MARK(v1)
This procedure causes program execution to stop with the

message 'Halt at PC=XXXX' where XXXX is the hexadecimal memory
address of the location where the HALT was issued. Together with
a compilation listing, HALT may be used to determine which of two
or more paths through a program are taken. This will normally be
used during de—bugging.

This procedure saves the state of the dynamic variable heap to be
saved in the pointer variable vl. The state of the heap may be
restored to that when the procedure MARK was executed by using
the procedure RELEASE (see below).

The type of variable to which vl points is irrelevant, since vi
should only be used with MARK and RELEASE never NEW. 2,4.5.7 POKE(X,V}

For an example program using MARK and RELEASE see Appendix 4.
POKE stores the expression V in the computer's memory starting

from the memory address X. X is of type integer and V can be of
any type except FILE or SET. See Section 2.4.5.5 above for a
discuseion of the use of integers to represent memory addresses.
Examples:

2.4.5.2. RELEASE(v1)

This procedure frees space on the heap for use of dynamic
variables. The state of the heap is restored to its state when
MARK(v1) was executed — thus effectively destroying all dynamic
variables created since the execution of the MARK procedure. As
such it should be used with great care.

POKE(#46000,'A") places #41 at location #6000,
FOKE(-14784,3.4E3) places 00 OB BO 70 at #C000.

- m e ' '
e B

FA5.0 OUTH,c)
See above and Appendix 4 for more details.

1 ¥

The procedure DUT has one parameter of type integer, i, and one
of type chary c. The character c is eutput directly to the 780 port
number i. Examples

2.4.5.4 INLINE(CL,CZ,C3, ceemnss)

This procedure allows IBO machine code to be inserted within the
Pascal program; the values (C1 MOD 25&, C2 MOD 25&, C3 MOD 256,
sssses) @re inserted in the object program at the current location
counter addrese held by the compiler. C1, C2, C3 etc. are integer
constants of which there can be any number. Refer to Appendix 4
for an example of the use of INLINE.

OUT(23,’A7 outputs the value ‘A’ to port 23.

R "m "m O m wm

20,59, PRON

The parameterless procedure PRON causes output to be directed
to the printer instead of the console. This simply uses DOS
function 5 instead of 2.

30
Ei

P

2.4.5.10 PROFF

The parameterless procedure PROFF causes output to be directed
to the console using DOS call 2.

2.4.5.11 PLOT(L,%,y?

The procedure PLOT has 3 parameters. The first is a boolean, t,
which specifies whether the point given by the integer
parameters, My, is to be lit or unlit. Thus PLOT(TRUE,XY) is
equivalent to PLOT X,¥ in BASIC and PLOTIFALSE,X,Y) is equivalent
to UNPLOT(X;Y? in BASIC.

2.4.5.12 ORIGINGt, v}

The procedure ORIGIN has two integer parameters and sets the

graphics origin to (xy). This corresponds directly to the BASIC
command of the same name.

2.4.5.17 DRAW(:L, v1,x2,y2,2)

The procedure DRAW has 5 integer parameters. The first 4 specify
the co—ordinates of the ends of the line to be drawn. The last
parameter specifies the style of line as in BASIC. Thus
DRAWG, y1,x2,y2,2) is equivalent to DRAW x1,y1 TO x2,y2,z in BASIC.

For example:

DRAW(0,0,60,60,2) draws a dotted line from (0,0) to (60,600,

2.4.5.14 FILL(x,y)

The procedure FILL has 2 integer parameters, x and y which give
the co-ordinate to start filling the screen with the foreground
graphics colour.

.4.5,1% POL Yichords,startangle, finishangle,cx,cy,radx,rady,cinc,)

The procedure FOLY has one boolean paramater and B integer
parameters and is used to draw polygons and ellipses.

The first parameter, chords, is of type boolean and is normally
false. I it is true then lines are drawn from the centre of the
polygon to the start and finish points.

The next two parameters startangle and finishangle must be
between 0 and 1023, An angle of 0 corresponds to facing right and
angles grow anti-clockwise with 1024 units in a whole circle. Thus
256 corresponds to upwards, 512 to leftwards and 768 to
downwards.

If the startangle and finish angle are the same a complete polygon
is produced. Note that due to the behaviour of the MOS routine if
startangle and finishangle differ by one an almost full polygon is
dr awr. "

The parameters cx and cy define the centre of the polygon. rads:
and rady define the horizontal and vertical radii of the polygon.

Note that because of the 4:3 aspect ratio of the screen rady/radsx
should be 4/7 to draw polygons that look regular.

The next parameter, cinc, determines how many sides the polygon
has. To draw one with N sides use 1024 DIV N. To draw a circle or
ellipse you should use a value of 32 or less. The lower the value
the long plotting will take but a better circle will result.

The last parameter z determines the type of line that is drawn as
in BASIC.

For example:
POLY(FAL SE,128,128,100,100,40,80,256,0);
draws a square in the middle of the screen.
POLY(TRUE,®,254,80,80,80,120,10,2);

draws a quarter circle in the middle of the screen with chords and
using dotted lines.

2.4.5.14 GCOL(foreground,background)

The GCOL procedure has two integer parameters. The first is the
new graphics foreground colour and the second is the new graphics
background colour. This corresponds directly to the BASIC

3=

command of the same name. The corresponding colours are:

2 Tratsparent 8 Medium Fed

1 Biack ? Light Red

2 Medium Green 12 barl Yel low
2 Light Greesn 11 Light Yellow
4 Dark Blue 17 Park Green

S Light Yellow 13 Magenta

& Darlk FRed 14 Gra.

7 Eyan 15 Whate

@.g. BCOL{10,6) will cause any graphics following this command to be
praduced in Dark Yellow on a Dark Red background.

2.4.5.17 TCOL{(foreground,background)

The TCOL procedure has two integer parameters. The first is the
new text foreground colour and the second is the new text
background colour. This correspends directly to the BASIC TCOL
command. See above for a list of colour numbers.

2.4.5.18 PSBiregister,valus)

The PSE procedure has two parammeters of type integer. The first
15 a sound register number (0..15) and the second is the value to
output to the specified register in the Sound Generator.

2.48.4 Further Predafined Functions.

2.4.46.1 RANDDM

This returns a pseudo-random number between 0 and 255 inclusive.
Although this routine is very fast it gives poor results when
used repeatedly within loops that do not contain I/0 operations.
1¥ the user requires better results than this function yields then
he/she should write a routine (either in Pascal or machine code)
tailored to the particular application.

2.4.46.2 BUCCHX)
¥ may be of any scalar type except real and SUCC(X) returns the
successor of X. Examples:

SUCCCAY) returns 'B° SUCC('S) returns '&°

34

46,5 PREDIX)

X may be of any scalar type except real; the result of the function
is the predecessor of X. Examples:

PRED{'j) returns i’ PRED(TRUE) returns FALSE

Z.46.4 ODDOXY

X must be of type integer. ODD returns a Boolean result which is
TRUE if X is odd and FALSE if X is even.

2.4.6.5 CPMVL,V2)

This useful function has two integer parameters (V1 and V2) and
returns an integer result. The effect is as follows: the I80
register C is loaded with the value (VI MOD 25&4) and the 780
register pair DE is loaded with the value V2 and then a CALL S is
executed; this is a subroutine call to the DOS with the routine
number contained in register C and any extra information required
by the routine contained in the register pair DE. Any result
returned by the DOS routine will be returned as the result of the
function CPM. For example:

DOS function 14 selects the disk drive whose number is contained
in register E (O=drive A, 1=drive B etc.). Thus to select drive B
from within a Hisoft Pascal program you can simply use: dummy =
CPM14,1).

DOS routine 25 returns the currently selected disk number so
that to obtain this number in the Pascal variable disk you could
use: disk == CPM(25,0);.

For further information on the DOS routines see the relevant DOS
Interface Guide.

24 b.A ADDRIVY

This function takes a variable identifier of any type as a
parameter and returns an integer result which is the memory
address of the variable identifier V. For information on how
variables are held, at runtime, within Hisoft Pascal see Appendix
3. For an example of the use of ADDR see Appendix 4.

35

2.4.6.7 PEEK(,T)

The first parameter of this function is of type integer and is
used to specify a memory address (see Section 2.4.5.5) The second
argument is a type; this is the result type of the function.

PEEF is used to retrieve data from the memory of the computer
and the result may be of any type except FILE.

In all PEEK and POKE (the opposite of PEEK) operations data is
moved in Hisoft Pascal's own internal representation detailed in
Appendix 3. For example: if the memory from #5000 onwards
contains the values: 50 61 73 43 61 4C (in hexadecimal) then:

WRITE(PEEK(#S000,ARRAYL1..6]1 OF CHAR)) gives ‘Fascal’
WRITE(PEEK(#5000,CHAR) gives ‘P’
WRITE(PEEK(#5000,INTEGER)) gives 24912
WRITE(PEEK(#5000,REAL)) gives 2.86227E+29

see Appendix 3 for more details on the representation of types
within Hisoft Pascal.

2.4.6.8 INF(p)

INP is a function with one integer parameter p. It returns as a
character, the value that would be given by executing the 80
instruction IN Aypl.

2.8.6.9 POINT Gy v

This is a function which returns a boolean result and has two
integer parameters. The result is true if the point given by the
coordinate is lit and false if it is unlit.

h

R P " T ™S
I PN B e e e
HHHE—.—'

r

| |
— m—

\

—

- O W e - -
e Den sn sesl Sew " -

R

SECTION 3 COMMENTS AND COMPILER OPTIONS.

Sal Comments.

The following is the syntax for a comment:

—)@—)(an‘r sequence of characters except *‘)_@_'>

jdentifiers or

gpﬂcial
A comment may occur between any two reserved words, numbers,
symbols — see Appendix 2.

3.2 Compiler Options.

ded by a $- TNEY
Compiler options are specified at the beginnind of comments Fre‘:.s?zption ‘fme pelowl.
consist of a letter followed by ‘+' or ‘- except’in the case af the e
1f more than one option is specified they should 68 separated by a com™=

Examples:

(##L— turn the listing off %)
(#$0—,C—,5—,A—,L— turn all checks off #)

The following options are available:
Option L:

ompiler-
Controls the listing of the program text and object code address by th® oM

1# L+ then a full listing is given.
If L— then lines are only listed when an error is detected.

DEFAULT: L+

Dption Oz P
" ivide and a
Controls whether certain overflow checks are pade. Integer multiply and di
real arithmetic operations are always checked for overflow.
11s are

: i tine ca
14 0O+ then checks are made on integer addition and subtraction MY

checked to ensure that their arguments are within range.
I¥ O— then the above checks are not made.

DEFAULT: O+

57

Dption C:
Controls whether or not keyboard checks are made during object code program execution.

14 C+ then if CTRLC is pressed then execution will return to DOS with a HALT message
see Section 2.4.5.6.

This check is made at the beginning of all loops, procedures and functions. Thus the user
may use this facility to detect which loop etc. is not terminating correctly during the
debugging process.

1 C~ then the above check is not made.

DEFAULT: C+

Option Sz
Controls whether or not stack shecks are made.

1§ S+ then, at the beginning of each procedure and function call, a check is made to ses
if the stack will probably overflow in this block. If the runtime stack overflows the
dynamic variable heap or the program then the message ‘Out of RAM at PC=000C s
displayed and execution aborted. Naturally this is not foolproof; if a procedure has a
large amount of stack usage within itself then the program may ‘crash’. Alternatively, i/
a function contains very little stack usage while utilising recursion then it is passible
for the function to be halted unnecessarily.

The address of the stack may be set at compilation time — see Section 1.2,
If S~ then no stack checks are performed.

DEFAULT: S+

Dption Az

Contrals whether checks are made to ensure that array indices are within the bounds
specified in the array’s declaration.

—_

1f A+ and an array index is too high or too low then the message “Index too high® or
‘Index too low' will be displayed and the program execution halted.

1f A- then no such checks are made.

DEFALLT: A+

tion Iz

When using 16 bit 2's complement integer arithmetic, overflow occurs when performing &
sy € >=, or <= operation if the arguments differ by more than MAXINT (32747) If thin
occurs then the result of the comparison will be incorrect. This will not normally
present any difficulties; however, should the user wish to compare such numbers, the
use of I+ ensures that the results of the comparison will be correct. The equivalent
situation may arise with real arithmetic in which case an overflow error will be 1ssued
if the arguments differ by more than approximately 3.4E38 ; this cannot be avoided.

. -
e s e e O e O e e

38

If I- then no check for the result of the above comparisons is made.

DEFAULT: I-

Option Pz

If P+ then the compiler listing is directed through the DOS call number S5; normally to a
printer.

P~ stops listing through DOS system call S and resumes normal listing through DOS
system call number 2; normally to CRT.

DEFAULT: P—

Dption F:

This option letter must be followed by a space and then a valid DOS file identifier of the
torm ‘drivesfilename.file extension’ — if ‘drive: is omitted then the current default drive
lelLer is assumed, the file extension must be ASC and this need not be specified.

The presence of this option causes inclusion of Pascal source text from the specified
{ile from the end of the current statement — useful if the programmer wishes to build up
& ‘library’ of much-used procedures and functions on the disk system and then include
Ahem in particular programs.

I uample: {$F B:MATRIX include the text MATRIX.ASC from drive Blj

This option may not be nested and may only appear within a program.

I campiler options may be used selectively. Thus debugged sections of code may be
wpweded up and compacted by turning the relevant checks off whilst retaining checks on
uitested pieces of code.

39

; ‘—_-—— — b

APPENDIX i ERRORS.

A.L1 Error numbers generated by the compiler.

1. Number too large.

2. Semi—colon expected.

3. Undeclared identifier.

4. Identifier expected.

5. Use '=' not ‘=" in a constant declaration.
&. ‘=" expected.

7. This identifier cannot begin a statement.
B. =" expected.

9. 7 expected.

10. Wrong type.

11. . expected.

12. Factor expected.

13. Constant expected.

14. This identifier is not a constant.

15. 'THEN expected.

16. ‘DO expected.

17. 'TD or ‘DOWNTO expected.

18. 'C expected.

19. Cannot write this type of expression.
20, 'OF expected.

21. °,' expected.

22. 't expected.

23. 'PROGRAM expected.

24. Variable expected since parameter is a variable parameter.

2%. "BEGIN expected.
26. Variable expected in call to READ.
27. Cannot compare expressions of this type.

28. Should be gither type INTEGER or type REAL.

2%. Cannot read this type of variable.

30. This identifier is not a type.

$1. Exponent expected in real number.

12. Scalar expression (not numeric) expected.
4%, Null strings not allowed (use CHRO)).
4, " expected.

15, T expected.

%4, Array index type must be scalar.

17, . mxpected.

W, T or ‘) expected in ARRAY declaration.
1%, Lowerbound greater than upperbound.

A0, it too large (more than 256 possible elements)

Al Function result must be type identifier.
A2, 'y or 'Y expected in set.
A%, o Yy or T expected in set.

A4, Type of parameter must be a type identifier.
A%, Mull met cannot be the first factor in a non—assignment statement.

Ah, fic v lincluding real) expected.

Ar, ticalar (not including real) expected.

Al Hets incompatible.

4%, ¢ and ' cannot be used to compare sets.

S0, FORMARD', “LABEL’, ‘CONST’, "VAR', ‘TYPE' or ‘BEGIN' expected.

51. Hexadecimal digit expected.

52. Cannot POKE sets.

59Z%. Array too large (> 64K

S54. ‘END or 7 expected in RECORD definition.

55. Field identifier expected.

Variable expected after WITH.

Variable in WITH must be of RECORD type.

Field identifier has not had asociated WITH statement.

Unsigned integer expected after 'LABEL'.

Unsigned integer expected after GOTOD'.

This label is at the wrong level.

Undeclared label.

Cannot assign or POKE files.

Can only use eguality tests for pointers.

The parameter of this procedure/function should be of a FILE type.
File buffer too large (>= 254 records i.e. 32K\

The only write parameter for integers with two ‘'s is emcH.
Strings may not contain end of line characters.

The parameter of NEW, MARK or RELEASE should be a variable of pointer type.
The parameter of ADDR should be a variable.

All files must be FILEs OF CHAR or subrange thereof.

Files may only be used as global variables or variable parameters.
RESET and REWRITE may not be used on INPUT or OUTPUT.

57.

&5.
&b,
&7.
&8.
&9.
70.
7l
72.
7E.

A.L.2 Runtime Error Messages.

When a runtime error is detected then one of the following messages will be displayed,
followed by " at PC=XXXX" where XXXX is the memory location at which the error occurred.
Consult the compilation listing to see where in the program the error occurred, using
XXXX to cross reference.

1. Halt

2. Dverflow

3. 0Out of RAM

4. /by zero

S. Index too low

&. Index too high

7. Maths Call Error
8. Number too large
9. Number expected
10. Line too long

11. Exponent expected
12. File Error #*

also generated by DIV.

Runtime errors result in the program execution being halted.

#* File Error is given if there is an attempt is made to access a file which has not been
opened for the reguired type of access. e.g. if a read on a file occurs after a REWRITE
without an intervening RESET. The address given in ‘PC=XXXX' is the address of the file
variable rather than the location in the program where the error occurred. If it is not
obvious which file has generated the error use the ADDR function. See Section 2.4.6.4.

42

|

——

—

S

=]
- .

| ;
F

|

AFPPENDIX 2 RESERVED WORDS AND PREDEFINED
IDENTIFIERS.

A 2.1 Reserved Words.

AND ARRAY BEGIN CASE CONST DIy Do
DOWNTO ELSE END FILE FOR FORWARD FUNCTION
G070 IF IN LABEL MDD NIL NOT

aF Or PACKED PROCEDURE FPROGRAM RECORD REFEAT
SET THEM TO TYPE UNTIL VAR WHILE
WITH

A 2.2 ial § s.

The following symbols are used by Hisoft Pascal and have a reserved meaning:

+* * 4
= <> < <= »= >
() C] * *) ~

A 2.3 Predefined Identifiers.

The following entities may be thought of a declared in a block surrounding the whole
program and they are therefore available throughout the program unless re—defined by
the programmer within an inner block.

For further information see Section 2.

CONST MAXINT = 327673
TYPE BODLEAN = (FALSE, TRUER
CHAR {The expanded ASCII character set);
INTEGER = —MAXINT..MAXINT;
REAL (A subset of the real numbers. See Section 1.3.}
TEXT = FILE OF CHAR;
VAR INPUT,OUTPUT : TEXT;
PROCEDURE WRITE; WRITELN; READ; READLN; RESET; REWRITE; GET; PUT;
PAGE; HAL T; USER; POKE; INLINE; NEW; MARK; RELEASE; OUT;
PRON; PROFF; PLOT; DRAW; FILLy POLY; ORIGING GCOL; TCOL; PSE;
FUNCTION ABS; SQR; 0DD; RANDOM; DRD; SUCC; PRED; INCH; EOLN; EOF;

PEEK; CHR; SBRT; ENTIER; ROUND; TRUNC; FRAC; SIN; COS;
TAN; ARCTAN; EXPj LN; ADDR; CPH; INP; POINT;

43

C)

™

- .

AFPPENDIX 3 DATA REPRESENTATION AND STORAGE.

A 5.1 Data Representation.

The following discussion details how data is represented internally by Hisoft Pascal.

The information on the amount of storage required in each case should be of use to most
programmers; other details may be needed by those attempting to merge Pascal and
machine code programs.

A 3.11 Integers.
Integers occupy 2 bytes of storage each, in 2's complement form.
I namples:
1 =2 BOOOY
256 = #0100
-256 = #FFQO

1he standard 780 register used by the compiler to hold integers is HL.

5.1.2 Characters, Booleans and other Scalars.
Ihwse occupy 1 byte of storage each, in pure, unsigned binary.

{haracters: B bit, extended ASCII is used.
E°E 845
T E #5B

Bivisleannss
ORI(TRUE) =1 so TRUE is represented by 1.
DORDIFALSE) = 0 so FALSE is representd by O.

e standard Z80 register used by the compiler for the above is A.

A 51 Reals.

The tmantissa, exponent) form is used similar to that used in standard scientific
it ation - only using binary instead of denary. Examples:

2=2#0" or 1.0,% 2'

121910° or LO,* 2°

45

-12.5 E ~1.29s10' or —5x2"
—11001, #2°'
—1.1001, #2 when normal ised.
[1.0%10™ or 1

Ty —L = i‘}‘ 1 1
1o 1010, 101,

50 now we need to do eome binary long division..

0001100
101 [o T E0000000G00000
101
110
101
1000
101 at this point
we see that the
fraction recurs
= 0.1, = 0.0001100,

1% 109110911_2_'" answer.

So how do we use the above results to represent these numbers in the computer? Well,
firstly we reserve 4 bytes of storage for each real in the following format:

normalised mant: ss?l f_expanen ':.I tHata
2F 22 el 7 0 bit
I o r e__ - J
H L E] register
sign: the sign of the mantissa; 1 = negative, 0 = positive.

normalised mantissa: the mantissa normalised to the form Laooooos:
with the top bit (bit 22) always 1 except when
representing zera (HL=0, DE=0).

exponent: the exponent in binary 2's complement form.
Thus:
3 § o IO(_)OF:!DO GOOO0000 00000000 00000001 (H40, @O0, #00, #01)
1 £ 0 1000000 QOOO0000 00000000 OOO00DO0 (H40, W00, #OO, #OG)
= § J 1100100 00000000 (0000000 00000011 (HE4, #O0, #OO, #OZ)
= 0 1100110 01100110 O1100110 11111100 (HbbL, HEL, Wo&, HEL)
45

t

N e P
e eewl seul el el B B B O e e

Bty ¢ wmmintier ing that HL and DE are used to hold real numbers, then we would have to load

Ve regia ®» in the following way to represent each of the above numbers:

2 = LD HL , #4000

LD DE , #0100

1 = LD HL , #4000

LD DE , #0000

=l = L HL , #E400

LD DE , #0700

.l = LD HL , #6468

LB DE , #FCéé

The last example shows why calculations involving binary fractions can be inaccurate;
0,1 cannot be accurately represented as a binary fraction, to a finite number of decimal

places, a

N.B. Reals are stored in memory in the order ED LH.

A 3.1.4 Records and Arrays.
Records use the same amount of storage as the total of their components.

Arrays: if n=number of elements in the array and
s=sire of each elenent then

the number of bytes occupied by the array is n#s,
e.g- an ARRAYLL..10]1 OF INTEGER requires 10%2 = 20 bytes
an ARRAYL2..12,1..101 OF CHAR has 11*10=110 elements and so requires 110 by tes.
A 3.1.5 Sets.
Sets are stored as bit strings and so if the base type has n elements then the number
of bytes used is: (n=1) DIV B + 1. Examples:

a SET OF CHAR requires (254-1) DIVB +1 = 32 bytes.
a SET OF (blue, green, yellow) requires (3-1) DIV 8+1 = 1byte.

A 3.1.4 Files.

Files require (41 + 128«buffer size) bytes where buffer size is specified in square
brackets ([1) after the file variable declaration (default is 1) — see Section llé.

Each file has associated with it a File Information Block (FIB} this is of the form given
overleaf:

47

0—1 FPointer to the dat
a buffer; £~ in Pascal termi

2-3 End of buffer add i T
- = iysoid ress (set up on creation).

O=unused (set up on creation),

l=read.

—l=write.
-] EOF(f)
&

Drive number: O=default 1=A,2=B,3=C etc., —1=terminal (i.e« INPUT and QUTPUT).

The following is the CP/M FCB entry - see the DOS manual for details.

4 Zero.
1E—IS Filename.
&-18 File type.
19-22 Zeroes.
§$—SB CP/M disk map.
Record Count i.e. initialise,
40— Data Buffer. paaiy

For the file INPUT we have:

g"ﬁ as above,
maximum linelength - 80 charact
a8 number of charact P
ers in th i
9-88 Data Buffer. PR SO L

For the file OUTPUT we have

0-6 as above.
7 one byte buffer.

B 5.L.7 Pointers.

FPointers occupy 2 bytes which contain the

of the variable to which pPhedian i) address (in Intel format i.e. low byte first)

A 3.2 Variable Storage at Runtime.

There are I cases

where i 2
runtimes the user needs information on how variables

are stored at

a. Blobal variables

b. Local variables

c. Parameters and
returned values.

= declared in the main program block.

—declared in an inner block.

~Passed to and from proced and
functions. . e

These individual cases a di sed
information may be found inm:: below and an example of how to use this

48

II fllubal variables

-

I

Wlobal variables are allocated from the top of the runtime stack downwards e.g. if the
runtime stack is at #8000 and the main program variables are:

VAR i ¢ INTEGER;
ch = CHAR;
% : REAL;
iz

I dwhich occupies 2 bytes — see the previous section) will be stored at locations
HPOOO0-2 and #BO00-1 i.e. at #AFFE and #4FFF.

th (1 byte) will be stored at location #AFFE=1 i.e. at #AFFD.

N {4 bytes) will be placed at #AFF9, #AFFA, GRF.FB and #AFFC.

Local variables

Local variables cannot be accessed via the stack very easily so, instead, the IX
register is set up at the beginning of each inner block so that (IX-4) points to the
start of the block’s local variables e.g.

PROCEDURE test;
VAR 1,13 INTEGER;

then:

1 linteger — so 2 bytes) will be placed at IX-4-2 and IX-4-1 i.e. IX—6 and IX-5.
1 will be placed at IX—8 and IX-7.

Value parameters are treated like local variables and, like these variables, the sarlier
o par mmeter is declared the higher address it has in memory. However, unlike variables,
I lomwest (not the highest) address is fixed and this is fixed at (IX+2) e.g.

PFROCEDURE test(i : REAL; i : INTEGER)

LT

| (allocated first) is at IX+2 and IX+3.
I ois st IXea, IX+5, IX+6, and IX+7.

Varipghle parameters are treated just like value parameters except that they are

49

always allocated 2 bytes and these 2 bytes conta
FROCEDURE testii: INTEGER; VAR x = REALJ;

then:

the refatem:e to x is placed at IX+2 and IX+3;
where x is stored. The value of i is at IX+4 and

in the address of the variahle e.g.

these locations contain the address
DX+5.

Returned values of functions are rlaced above the first parameter in memory e.g.

FUNCTION test(i : INTEGER) = REAL;

then i is at IX+2 and IX+3
IX+6 and IX+7,

50

and space is reserved for the returned value at IxX+4, IX+5,

—

j—

s s e e e e

APPENDIX 4 SOME EXAMPLE HISOFT PASCAL 4 PROGRAMS.

There follow some example programs written in Hisoft Pascal. All have been thoroughly
tested and therefore can be typed in with confidence.

Some of the programs may be of practical use; certainly all of them demonstrate
particular aspects of the implementation of Pascal within Hisoft Pascal, to facilitate
the user's learning process.

(* A program to create a file ‘TESTDATA.DAT on disk drive A.
Shows the handling of strings versus individual characters
and use of FILE, REWRITE. EOLN. READLN #)

PROGRAM MAKEF ILE:

CONST

MAXFILE = 10: (# file sntries *)

MAXSTRING = 123 (* max. number length =)
VAR

DATA ¢ FILE DF CHAR:

13 1..MAXFILEs

i 1..MAXSTRING;

CH & CHAR:

CHETRING : ARRAYL1..MAXSTRING] OF CHAR:

BEGIN

REWRITE(DATA, Az TESTDATA.DAT ")z open file for writing =)

FOR I :z= 1 TO MAXFILE DO
BEGIN
WRITE('Name please? "3
READILN;
WHILE NOT EOLN DO {# process input character %)
BEGLN (* by character =)
READ(CH) 2
WRITE«DATA,CH) (# and output to file #)
END ; (* character by character *)

WRITELN(DATA : (* new line to file *)
WRITE(Number please?
READLN;

READ (CHSTRING) ;

iz=13

WHILE CHSTRINGCil <> CHR(0) DO

¥
(%
[£3

process input line as #*)
as whole string #)

BEGIN
WRITE (DATA,CHSTRING(13); (* write string to file, =)
ir=i+l {*# character by character. #)
END;
WRITELMN(DATA)
END

ENDG.

{(* Program to list the lines of a file in reverse order.

Example of: FPointers (to create a

PROGRAM FILEREVERSE;:

CONST
STRLEN=203

TYFE
STRING = PACKED ARRAYL1..S5TRLEN] OF CHAR:
ID = RECORD
NEXT z ~IDj
NAME NUMBER : STRING
END;
LIME = "~ID;
VAR
FPREVIOUS, CURRENT : LINKj;
DATA : TEXT:
BHEGIN
RESET (DATA. " TESTDATA.DAT "3

PREVIDUS 1= NILj
WHILE NOT EOF (DATA) DO
BEGIN
NEW (CURRENT) 3

WITH CURRENT" DO
BEGIN
READLN (DATA,NAME) 3
READLN (DATA, NUMBER) 3
MEXT := PREVIDUS
END;

PREVIDUS 3= CURRENT

END;

(# Having initialised the linked list, now output it in reverse order. #%)

CURRENT = PREVIOUS:
WHILE CURRENT<>NIL DO
BEGIMN
WITH CURRENT™ DO
WRITELM (NAME, * " WNUMBER) 3
CURRENT := CURRENT.NEXT
END
END.

52

linked-1list),

Files and strings. #*)

(# Reverses entries in a file. #)

(* Maximum string length *)

{# Note: FACKED ignored #)

(# Although illegal in %)

(# Standard Fascal, the recursive
reference to ID *)

(# allows a linked list #)

(# structure to be created. *)

(# Pointers to ID. #)

‘TESTDATA.DAT " on the
for reading. *)

(% Open
default drive,

— s | [—y

(# Creates a new dynamic variable
of type ID. *)

{# Get ready to assign to the new
dynamic variable. #)

(# Read in the name and number #*)
(#* from separate lines. #*)

% Make link point to previous #)
(% entry. =)

{* Make this entry the entry
for the next iteration. #*)

& '
e

1
i —

L

— e e el e e e e

(# Program to list lines of a file in reverse order.

Shows use of pointers, records,

FPROGRAM Reverselines;

TYPE elem=RECORD
next: "elem;
ch:CHAR

END:
link="elem;

VAR prev.cur.heap:link;
data : FILE OF CHAR;

BEGIN
RESET (data, "A: TESTDATA.DAT ') 3
REPEAT
MARK (heap;
previ=nNIlz
WHILE NOT EOLNidata! DO
BEGIN
MEW (cur);
READ (data,.cur.chi;:

curT.next:=prev;
prev: scur
EMD:

EDF,

MARK and RELEASE. =)

(*# create linked-list structure %)

(# all pointers to '‘elem #)

(* open file for reading. *)
(% until end-of-file *)

T (¥ assign top of heap to heap’'. %)
(% popints toe no variable vet. *!

(#* create a new dynamic record #)
(# and assign i1ts field to one
character from file. #)

{# this field's pointer addresses =)

i®* previous record. #*)

(# Write out the file entry backwards by scanning the

records set up backwards. #)

Cur:=prevg
WHILE cur <> NIL DO
BEGIN
WRITE (cur~.eh)s
curz=cur-.next
END
WRITELN;
RELEASE (heap):
READLN(data)
UNTIL EOF (data)
END.

(* NIL is first. #}
(* WRITE this field i.e. character.
(% Address previous field. #)

(# Felease dynamic variable space.

53

*}

*)

i* Frogram to show how to
i.e.

get vour hands dirty !
how to modifv Fascal variables using machine code.

Demonstrates PEEK, POKE. ADDR and INLINE. #)

PROGRAM diwmul t2:
VAR r:REAL:
FUNCTION divby2ixsREAL) sRERL:

VAR 11 INTEGER;
BEGIN

i:=ADDR (x)+1;

POKE (i ,PRED (PEEK (1 ,CHAR) } 33

divhyZ:=x
END:

FUNCTION multbyZ(x:REAL):REAL:

BEGIN
INLINE (#DD,#34 ., 3) ¢

mul thy2s =y
ENDj

BFEGIN

REPEAT
WRITE(Enter the number r “);
READ(r) 3

(% Function te divide by 2 ..
- quickly. %)

(# Foint to the exponent of x.
(# Decrement the exponent of x.
see Appendix JF.1.3. #}

(# Function to multiply by 2 ..
we Qquickly. #}

(# INC (IX+3) - the exponent of
— see Appendix 3.2. *)

(# No need for READLN - see
Section 2.4.1.%. =)

WRITELN('r divided bv two 1s «divbv2ir)z7:i20;s
WRITELN{'r multiplied by two 18’ ,multby2ir)e7:2}

UNTIL r=0D
END.

54

)

»

F——

N E A O PR WE O Pm O m e

—

e

-

r

-

I

(# Program to show use of recursion. #)

PROGRAM FACTOR:

(% This program calculates the factorial of a number input from the
kevboard 1) using recursion and 2} using an iterative method. #*)
TYFE

FOSTMNT = O..MAXINT:

VAR
ME THOT:

: CHAR:
NUMBER

G MAXINT
(% Recursive algurithm. #3)

FUNCTION RFACI(N @ POSINT) = INTEGER;

VAR F @ POSINT:
BEGIN
IF N>1 THEN F = N * RFACI(N-1)
ELSE Fi=1:
RFAC 1= F
ERL;

(¥ RFAC i1nvoked N times. #)

(* [terative solution. *)

FUNCTION IFAC(N : POSINT) : INTEGER:

VAR I,F : POSINT;

BEGIN
F t= 1}
FOR I z= 2 TO N DD F == F%I;
IFAC := F

EMI

i*# Simple loop. #)

BEGIN
REPEAT
WRITE('Give method
READLNG
READ (METHOD , NUMEBER) ;
IF METHDOD = 'R”
THEN WRITELM{NUMBEFR, ! =
ELSE WRITELN(NUMBER,''! =
UNTIL NUMBER=O
END.

(I OR R) and number r3

' RFAC (NUMEBER))
*y [FAC (NUMBER))

55

L] ¥ | ¥

|

.

L)
- -

{1

'

¢

]

56

&
e

-

BIBLIOGRAPHY.

K. Jensen and
N. Wirth

LR. Wilson and
A.M. Addyman

W. Findlay and
D. A. Hatt

J. Tiberghien

J. Welsh and
J. Elder.

PASCAL USER MANUAL AND REPORT.
Springer—Verlag 19735.

A PRACTICAL INTRODUCTION TO PASCAL WITH BS 6192.
MacMillan 1982.

PASCAL. AN INTRODUCTION TO SYSTEMATIC PROGRAMMING.
Pitman Publishing 1978.

THE PASCAL HANDBOOK.
SYBEX 1981.

INTRODUCTION TO PASCAL.

57

58

HISOFT

180 High Street North
Dunstable, Beds. LUG 1AT
Tel: (0582) 696421

We hope that you enjoy using our Pascal compiler and welcome any correspondence from
you, whether it be constructive criticism or bug-reporting. We especially need to know
of any problems that you may experience so that we can continually improve the
compiler.

To complement Hisoft Pascal on the Tatung Einstein computer we also have available
DEVPAC, our powerful assembler and disassembler/debugger. The assembler contains
many extremely advanced features not found in other less powerful products.

ai Macros with parameters are supported. DEVPAC allows you to set up library files of
macros on disc which it will search at assembly—time.

b} DEVPAC can include source tevt from disc while assembling. This important and
powerful feature enables very large source files to be assembled and removes the
annaying memory constraints that plague other assemblers. (160K of source no problem).

c) DEVPAC uses a true binary—tree symbol table which greatly increases the speed of
assembly (to more than 4000 lines per minute).

dl Length of labels is under user control enabling use of meaningful symbols and
optimisation of symbol table size.

&) Complex arithmetic operations possible for label definitions.

f) The monitor/dissassembler while including all the normal functions (single-step,
dynamic breakpoints, read in disc-files etc) includes <continue until breakpoint x times>
for loop repetitions, enter ASCII characters, find sequence of bytes OF find assembler
instruction (@g.. find LD HL, CO00) or part instruction (eg..find PUSH or find LD BC,).

@) ALL registers and contents shown and easily changed. Bytee following register
address, contents of memory and 20 line dissassembly displayed.

We think that if you compare the features of DEVPAC with any other I80 development
packages available for the Einstein you will find that when it comes to assembly
language... there is no choice.

We also have all our products available for a wide range of home micros; Spectrum,
Sharp, Memotech, MSX, Amstrad, CP/M etc. Write for details.

Flease feel free to use the space overleaf for your notes....

59

